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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1835

INVESTIGATION AT LOW SPEEDS OF TEE EFFECT OF ASl_ECT

RATIO AND SWEEP ON ROLLING STABILITY

DERIVATIVES OF UNTAPERED WINGS

By Alex Goodman and Lewis R. Fisher

SUMMARY

A low-scale wind-tunnel investigation was conducted in rolling flow

to determine the effects of aspect ratio and sweep (when varied independ-

ently) on the rolling stability derivatives for a series of untapered

wings. The rolling-flow equipment of the Langley stability tunnel was

used for the tests.

The results of the tests indicate that when the aspect ratio is

held constant, an increase in the sweepback angle causes a significant

reduction in the damping in roll at low lift coefficients for only the

higher aspect ratios tested. This result is in agreement with available

swept-wing theory which indicates no effect of sweep for aspect ratios

near zero. The result of the linear theory that the damping in roll is

independent of lift coefficient and that the yawing moment and lateral

force due to rolling are directly proportional to the llft coefficient

was found to be valid for only a very limited lift-coefficlent range

when the wings were highly swept. For such wings, the damping was

found to increase in magnitude and the yawing moment due to rolling, to

change from negative to positive at moderate lift coefficients.

The effect of wing-tlp suction, not accounted for by present theory,

was found to be very important with regard to the yawing moment due to

rolling, particularly for low-aspect-ratio swept wings. An empirical

means of correcting present theory for the effect of tip suction is

suggested.

The data of the present investigation have been used to develop a

method of accounting for the effects of the drag on the yawihg moment

due to rolling throughout the lift range.

INTRODUCTION

In order to estimate the dynamic flight characteristics of an air-

plane, a knowledge of the stability derivatives is necessary. The static-

stability derivatives are easily determined from conventional wind-tunnel
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tests. The rotary derivatives, howewer, have usually been estlmate_ in
the past from available theory because of the lack of a convenient
experimental technique. Such a technique has been developed, and the
rotary derivatives can now be easily d_termlned by the utilization of
the curved-flow and rolling-flow equil_ent in _he Langley stability
tunnel. This equipment is being utilized for the purpose of determining
the effects of various geometric variables on the rotary and static
stability characteristics of wings and complete airplane configurations.
The method of determining the rolling derivatives by means of the rolling-
flow equil_ent is described in reference 1.

The present paper gives results of tests madeto determine the
effects of independent variations of aspect ratio and sweepon the rolling
derivatives of a series of untapered wings. The static and yawing deriva-
tives determined for the samewings are reported in reference 2. Data
obtained in the present investigation have been used to derive an empirical
correction to existing theory for evaluation of the derivative of yawing
momentdue to rolling.

SYMBOIS

The data are presented in the form of standard NACAcoefficients of
forces and moments, which are referred in all cases to the stability axes
with the origin at the quarter-chord point of the meanaerodynamic chord
of the models tested. The positive directions of the forces, moments,
and angular displacements are shown in figure 1. The coefficients and
symbols used herein are defined as follows:

CL

CD

Cy

C_

Cn

lift coefficient (L/qS)

drag coefficient (-X/qS)

lateral-force coefficient (Y/qS)

rolling-moment coefficient (L'/qSb)

yawing-momentcoefficient (N/qSb)

L lift

X longitudinal force

Y lateral force

Z normal force

L ! rolling moment

N yawing moment
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q dynamic pressure (lpV 0

p mass density of air

V free- stream velocity

S wing area

b span of wing_ measuredperpendicular to plane of symmetry

c chord of wing_ measured parallel to plane of symmetry

/2 , b/2
mean aerodynamic chord _ J0 c2dy)

y distance measured perpendicular to plane of symmetry

x distance of quarter-chord point of any chordwise section from

leading edge of root chord measured parallel to plane of

symmetry

x distance from leading edge of root chord to wing aerodynamic

center _ cx i

d longitudinal distance from mldchord point at wing tip to

coordinate origin

x longitudinal distance rearward from coordinate origin (center

of gravity) to wing aerodynamic center

A aspect ratio (b2/S)

k taper ratio (Tip chord/Root chord)

angle of attack, measured in plane of symmetry

A angle of sweep, degrees

pb/2V wing-tip helix angle_ radians

p rolling angular velocity_ radians per second

8C L

CL_- 8_

8C D

CD_- _
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3C n

Cnp- _(_/

APPARATUS AND TESTS

The tests of the present investigation were conducted in the 6-foot-

diameter rolling-flow test section of the Langley stability tunnel. In

this test section, rolling flight is simulated by rotating the air stream

about a rigidly mounted model. (See reference 1.)

The models tested consisted of a series of untapered wings, all of

which had NACA 0012 airfoil sections in planes normal to the leading edge.

The model configurations are identified by the following designations:

Wing

1

2

3

4

5
6

7
8
9

Aspect ratio

1.34

1.34

i .34

2.61

2.61
2.61

5.16

5.16
5.16

Sweepback

(deg)

0

45
60

0

45
60

0

45
60

The wing plan forms and other pertinent model data are presented

in figure 2.

The models were rigidly mounted on a single strut at the quarter-

chord point of the mean aerodynamic chord° (See fig. 3-) The forces and

moments were measured by means of electrical strain gages mounted on the

strut.
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All of the tests were made at a dynamic pressure of 39.7 pounds per

square foot (Mach number of 0.17) with the exception of the tests made

on wing 9. The tests on this wing were made at a dynamic pressure of

24.9 pounds per square foot (Mach number of 0.13) because of the flexi-

bility of the model. The Reynolds numbers for these tests are presented

in table I. In the present investigation, tests were made through a

range of rotor speeds corresponding to the values of pb/2V given in

table I. Each model was tested through an angle-of-attack range from

approximately zero lift up to and beyond maximum lift.

As part of this investigation_ She effects of sharp-nose airfoil

sections on the rotary derivatives were also determined. The sharp-nose

airfoil sections were simulated by attaching full-span leading-edge

spoilers to wings i and 4 (fig. 2).

CORRECTIONS

Corrections for the effects of Jet boundaries_ based on unswept-

wing theory, have been applied to the angle of attack, drag coefficient,

and rolling-moment-coefficient data.

No corrections for the effects of blocking, turbulence, or for the

effects of static-pressure gradient on the boundary-layer flow have been

applied.

RESULTS ANDDISCDBSION

Presentation of Data

The results of the present series of tests are presented in figures 4

to 17. The lift coefficient and drag coefficient not ideally associated

°2
with lift CD _A for the present series of wings are presented in

figure 4 and were obtained from tests of reference 2. The rolling

stability characteristics for the wings with and without spoilers are

given in figures 5 to 8. The development of the method used to calculate

the yawing moment due to rolling throughout the lift range is presented

in figures 9 to 15. A comparison between the experimental and calculated

values of the yawing moment due to rolling is given in figures 16 and 17.

Damping in Roll

Results obtained for the damping in roll (fig. 5) show that for the

low-aspect-ratio wings (A = 1.34 and 2.61) variations in the sweep angles

produced rather irregular effects. At the lowest aspect ratio, the damping

in roll of the wings with 45 ° and 60 ° sweepback was greater than that of
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the unswept wing, and the difference was greater at high lift coefficients
than at low lift coefficients. For an aspect ratio of 2.61_ the damping
in roll increased abruptly at lift coefficients of about 0.3 and 0.6 for
the 60° and 45° sweptback wings, respectively; whereas, no abrupt change
was noted for the unswept wing except at maximumlift. The abrupt changes
in damping in roll occur at approximately the lift coefficients at which

C_2 (See fig. 4(b).)
the drag increment CD - _-- begins to increase.
Changesin the damping in roll (as well as in other rotary and static
derivatives) might be expected because an increase in the incre-

CL2
ment CD _A should correspond to the beginning of flow separation
from somepoint on the wing surface. Appreciably sharper breaks in the

curves of CD CL2- _ were obtained for the sweptback wings having an
_A

aspect ratio of 5.16. (See fig. 4(c).) The breaks occur at lift coeffi-
cients of about 0.3 and 0.5 for the wings with 60° and 45° sweepback_
respectively, which are in fair agreement with the lift coefficients at
which breaks occnr in the damping-in-roll curves (fig. 5).

An increase in Reynolds number, which would delay separation and

consequently cause the increases in CD - --CL2 to occur at higher lift
xA

coefficients_ probably would also extend the linear portions of the
curves of damping in roll and of the other rotary derivatives.

The experimental values of CZp for CL = 0 determined from these
tests are compared with the theoretical values obtained from the approxi-

mate theory of reference 3and by an application of the theory of

Weissinger as presented in reference 4. (See fig. 6.) The variation

of CZp for CL = 0 as given by reference 3 is

(A + 4)c°sA _ p)ACZp = A + 4 cos A Z =0 o

where _Zp)A=0O for CL = 0 is obtained from the best available theory
\ /--

or experimental data. A section-lift-curve slope of 5.67 per radian was

used for both the Weissinger and approximate theory computations. In

general, the experimental data compare about equally well with either of
the theories. Both theories indicate a decreased effect of sweep as the

aspect ratio is reduced, although the variations indicated by reference 4

appear to be somewhat more reliable than those indicated by reference 3,

particularly at low aspect ratios.

Full-span leading-edge spoilers tested on two unswept wings (wings i

and 4) had little effect on CZp over a greater part of the lift range.
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(See fig. 7-) At high lift coefficients, a definite reversal in the sign
of CZp was obtained slightly before maximumlift was reached. A rever-
sal in the sign of CZp for the wings without spoilers could not be
established because near maximumlift the model vibrated so severely that
accurate measurementscould not be made.

Lateral Force Due to Rolling

The derivative Cyp varies linearly with lift coefficient in most
cases for only a limited range of lift coefficients. (See fig. 8.) The

lift are compared in figure l0 with valueszeroslopes Cyp/CL through
obtained by the approximzte theory of reference 3. Both theory and
experiment indicate an increase in slope with sweepfor constant aspect
ratio. The agreement between theory and experiment is poor, however, at
the lower aspect ratios. The theory of reference 3 does not account for
the values of Cyp/CL_ obtained at zero sweep. These values are presumed
to be caused by tip suction (analogous to leading-edge suction discussed
in reference 5)- _or the wings considered, the effect of tip suction
appears to be approximately independent of the sweepangle, because the
differences between the experimental and theoretical curves are almost
the sameat all sweepangles, although the magnitude of the difference
increases appreciably as the aspect ratio is reduced. The theory of low-
aspect-ratio triangles presented in reference 5 indicates that the con-
tribution of tip suction to the derivative Cyp varies inversely as the
aspect ratio° If the samerelationship is assumedto apply to the pre-
sent wings, an empirical expression for the effect of tip suction can be
determined by plotting Cyp/CL for zero sweepagainst I/A. Such a
plot, obtained from the present data and from unpublished data on a
tapered wing, is presented in figure 9. The data fall consistently
below the curve indicated by reference 5 for low-aspect-ratio triangles
but are in fair agreementwith the following empirical expression:

(i)

When this increment is added to the contribution caused by sweep, as

given in reference 3, the following equation results:

__Cyp= A + cos A tan A + _i

CL A + 4 cos A A

(2)

Results calculated from equation (2) are compared in figure i0 with

the experimental results. The fact that good agreement is obtained is

of little interest, since the same experimental results were used to

evaluate the empirical correction included in equation (2). The most
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important application of the tip-suction increment of Cyp is in
connection with the derivative Cnp as discussed in the following
section.

Yawing MomentDue to Rolling

For the unswept wings without spoilers, wings 4 and 7, the variation
of Cnp with lift coefficient was approximntely linear up to maximum

lift coefficient. The variation of Cnp with lift coefficient for wing i
(without spoiler) was linear for only the low-lift-coefflcient range.
(See fig. ii.) The sharp leading-edge wings, as simulated by attaching
full-span leading-edge spoilers to wings i and 4, yielded about the same
values of Cnp at low lift coefficients as whenno spoilers were
attached. (See fig. 7.) At moderate lift coefficients, the spoilers
caused a reversal in the sign of Cnp, and Cnp becamepositive. This
variation is similar to the variation obtained with the swept wings.
(See figs. 7 and ii.)

The values of Cnp for the swept wings were proportional to the
lift coefficient for only a limited range. At moderate lift coeffi-
cients, Cnp reversed sign and ass1_medcomparatively large positive
values. This change probably results from the high drag associated
with partial separation. Also, the initial slope Cnp/CL (fig. 13)
increases as the aspect ratio decreases. The theory of references 3 and 6
indicates the opposite variation. A possible explar_tion for the observed
trend might be that the tlp-suction contribution to the lateral force
also contributes to the yawing moment. If the resultant tip-suction
force is assumedto act at the mldchord point of the wing tip, a correc-
tion to Cnp can easily be derived from the empirical expression pre-
viously obtained for the tip-suction force. The correction is

where Cyp/CL for A = 0° is given by equation (i) and d, the longi-
tudinal distance from the mldchord point at the wing tip to the coordinate
origin, is

d =-_ tan A+ _A + x'
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where x' is the longitudinal distance rearward from the coordinate

origin (center of gravity) to the wing aerodynamic center. Therefore_

for untapered wings

ACnp l(tan i) i xCT - V_ A + X A2
(3)

which when added to equation (31) of reference 3 gives

QZ_CnP)I _ A + 4

CL A + 4 cos A + 6 A 19 CT,

_A<tanA+l)- 1 x'A 2

(4)

/. \

The quantity qCnp/CL) 0 was given as [Cnp/CL)A=oO in reference 3,

but the new symbol is used herein since this quantity does not include

tip suction. (Equation (3) does not reduce to zero at A =0 °.)

Equation (4) has been used to construct the chart shown in figure 12.
I^_%

The symbol k_OnPJ 1 indicates that the chart applies only to that part

CL

of Cnp contributed by the lift and induced-drag forces. Figure 13

shows a comparison of the experimental and calculated values of Cnp/CL.

The revised equation results in appreciable improvement over the

equation of reference 3- The agreement is very good for all the wings

tested.

As indicated by figure ii the curves of Cnp against CL are

linear over only a small range for the swept wings because of the rise

in drag at high lift coefficients. An equation which includes considera-

tion of the effect of the drag for unswept wings is given in reference 7

as

Cnp =-K(CL- CD_ ) (5)

where the value of K depends on the plan form of the wing. If the

induced drag is separated from the profile drag, equation (5) can be

written as

Cnp -KC L\I - 2 _A
(6)
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where

CD = D /

For swept wings, the first term of equation (6) can presumably be

replaced by equation (4) and, therefore,

_Z_CnP)I CL+ K(CDo_ _ (7)
Cnp = CL

The increment of Cnp not associated with the lift or induced-

drag forces, therefore, can be expressed as

(ACnp)2 = K(CD0 )
(8)

The value of the constant K can be evaluated empirically,

since (CDn _ can be obtained by measuring the slopes of the curves
\ v/

CL2

of CD _A plotted against angle of attack in figure 4, and

<AC np) 2 = Cnp - ¢ACnp) 1

where Cnp is the experimental value and _P/I£C_) is obtained from
i

figure 12° In evaluating (CD0J_ any initial slope at zero lift was sub-

tracted from the slope at a specific angle of attack because for the

symmetrical wings considered, the initial slope must have resulted from

support-strut interference.

Values of _ACnp_2 are pl°tted against (CD0)_ in figure 14. The

slopes of the curves appear to depend on aspect ratio, but no consistent

variation with sweep angle exists. The average slopes of the data of

figure 14 are plotted against aspect ratio in figure 15. At high aspect

ratios the value of the constant _ approaches that given by Zimmerman

(reference 7), but at low aspect ratios the empirical values are much

higher.

Equation (7) was used to calculate Cnp throughout the lift range

for the wings of the present investigation and for several others

(unpublished). The experimental and calculated values of Cnp for these

cases are presented in figures 16 and 17.
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The wings considered in figure 16 are the wings of the present Inves_
tigation which were used to develop the empirical corrections to the
theory and, therefore, the fact that reasanably good agreementbetween
calculations and experiment was obtained might not be considered as a
valid verification of the method. The wings considered in figure 17,
however, include the unswept wings with leading-edge spoilers of the

present investigation and certain additional wings from other unpublished

investigations. In general, the agreement shown in figure 17 is approxi-

mately as good as that shown in figure 16. Two of the wings in figure 17

were tapered (taper ratio of 0.50 and 0.25). The agreement obtained with

these tapered wings is approximately as good as that obtained for

untapered wings, in spite of the fact that the method was developed for

untapered wings.

CONCLUB IONB

The results of low-scale wind-tunnel tests made in rolling flow to

determine the effects of aspect ratio and sweep (when varied independ-

ently) on the rolling stability derivatives for a series of untapered

wings indicated the following conclusions:

1. When the aspect ratio is held constant, an increase in the sweep-

back angle causes a significant reduction in the damping in roll at low

lift coefficients for only the higher aspect ratios tested. The result

is in agreement with available swept-wing theory which indicates no

effect of sweep for aspect ratios near zero.

2o The result of linear theory that the damping in roll is inde-

pendent of the llft coefficient and that the yawing moment and lateral

force due to rolling are directly proportional to the lift coefficient

was found to be valid for only a very limited lift-coefflcient range

when the wings were highly swept. For such wings, the damping in roll

was found to increase in magnitude and the yawing moment due to rolling,

to change from negative to positive at moderate llft coefficients.

3. The effect of wing-tip suction, not accounted for by present

theory, was found to be very important with regard to the yawing moment

due to rolling_ particularly for low-aspect-ratio swept wings. An

empirical means of correcting the present theory for the effect of tip

suction is suggested.

4. The data of the present investigation have been used to develop

a method of accounting for the effects of the drag on the yawing moment

due to rolling throughout the lift range.

Langley Aeronautical Laboratory

National Advisory Committee for Aeronautics

Langley Air Force Base, Va., January 19, 1949
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TABLE I

TEST CONDITIONS AND CONFIGURATIONS

Sweep

 nglo
deg)

0

0

0

45

45

45

6o

60

6o

Aspect
ratio

1.34

2.61

5.16

1.34

.61

5.16

1.34

2.61

5.16

I

Reynolds number
m

based on c
and V

1.99 x lO 6

1.39

.98

1.97

1.39

.97

1.97

1.37

.76

Wing-tip helix

_.ngle,

2V

O, + 0.0149, + 0.0448

O, +,0208, + .0625

0, +.0288, +.0664

0, +.0149, ±.0446

O, +.0212, ±.0619

O, ±.0288, ±.0664

O, ±.0149 ±.0448

0, ±.0212, +.0619

O, +-0355, +o1064

• r..
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Figure i.- System of axes used. Positive directions of forces, moments_

and angles are indicated.
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Figure 4,- Variation with angle of attack of the aerodynamic

characteristics of a series of swept wings.
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